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Abstract. We discuss models where particles are added one by one to sites in the one- 
dimensional lattice. Each site may contain a finite or infinite number of particles. The 
percolation density depends on the size of the lattice and maximum occupation number 
of the sites. We derive site and particle cluster distributions in the case of infinite occupation 
sites. 

In the standard one-dimensional percolation problem (Stauffer 1985), lattice sites are 
occupied independently with probability P. In  order to have an infinite cluster, all 
sites must be occupied. Therefore, a phase transition occurs at P,= 1. 

The purpose of this comment is to introduce less trivial percolation problems in 
one dimension. A few arguments will be given to predict the behaviour of these models. 

The models are as follows: particles are added one by one to randomly chosen 
sites in a one-dimensional lattice. Two possibilities arise: (a )  each node may contain 
an infinite number of particles (unrestricted problem) or ( b )  nodes may hold a maximum 
number K of particles. In the second case, the addition of a particle to a full node 
is rejected. These models correspond to multiparticle adsorption with particles arriving 
randomly at the adsorbing sites. 

We proceed now to discuss the percolation properties of these models. Two 
properties are of interest: the percolation density at which a particle falls on the last 
empty site and the distribution of clusters at any density. We will discuss mainly the 
first property. 

In lattices where sites can hold an infinite number of particles it does not make 
much sense to talk about density; we should talk rather about occupation numbers. 
Consider a lattice of N sites to which M particles are added one by one at randomly 
chosen sites. As in the standard one-dimensional model, the probability of having 
empty or non-empty sites determines the distribution of site clusters. In this case, the 
probability of a site having n particles is 

M - n  

P n ( M ) = ( + ) n ( l - + )  . 

As in the standard model, the probability that a site belongs to an s-site cluster is 
given by 

r* = s p a  - P o ) c  (2) 
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where p o ( M )  = (1 - N - l ) M  follows from (1). This differs from the number of s clusters 
per particle given by Stauffer (1985) by a factor of s. We can also calculate the 
probability that a given node forms part of a cluster of m particles. This is given by 

r = l  c = l  1 = 1  

As an example, the probability that a site belongs to a four-particle cluster after the 
addition of M particles is given by 7r4 = pi(4p:( M )  + 9 p : (  M ) p , (  M )  + 
4 p l ( M ) p , ( M ) + 2 p : ( M ) + p 4 ( M ) ) .  The terms are contributions from clusters of 4x  1, 
2 x 1 + 2 ,  1 + 3 , 2  + 2 and 4 particles, respectively. 

We let a be the number of particles per site at percolation; therefore, M = UN.  We 
assume that percolation happens after N / 2  particles have been added to the lattice 
when only one empty site is left ( p o =  l /N) .  By comparing this with (1) we have 

N - 1  - (1 - ~ - l ) ( a - l / Z ) N  - e-(a-1/2) 

which readily yields a - f+ ln  N for large N. The expected number of particles per 
site at percolation is seen to depend on the lattice size. This is not unreasonable, since 
in order to reach the last few empty lattice sites many particles will fall on previously 
occupied sites. Table 1 shows numerical results for the occupation number at different 
lattice sizes. These results agree quite well with the estimate given above. 

Table 1. Lattice size, measured occupation number at percolation (1000 configurations for 
each lattice size) and analytical estimate ($+In N )  for the unrestricted model. 

N a (simulations) ;+In N 

200 5 .91  1.0 5.8 
1000 7.5 * 1.0 7.4 
9000 9 .61  1.0 9.6 

The problem becomes more complicated if only K particles are allowed at each 
lattice site, with K other than one (the standard problem) or infinity (the unrestricted 
problem just solved). In the general case it is appropriate to speak of a percolation 
density, corresponding to the number of particles just needed to cover every site divided 
by NK. The independent addition of each new particle diminishes with a certain 
probability the existence of empty nodes. The probability of a site being empty after 
the addition of M particles is recursively given by 

where p , ( j )  is the probability of a node having i particles after j particles have been 
added to the system, consistently with earlier notation. We have po(0)  = 1, p K  (0) = 0. 
Each term of the sum in (4) represents the probability that, out of the non-full nodes, 
the nth particle will fall on an empty one. In order to solve for p K ,  the probability of 
a node being full, a system of K equations analogous to (4) must be iterated; 
alternatively, p K  can be found by solving a rather complicated restricted partitions 
problem. Either calculation is beyond the scope of this comment. 
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With the caveat that the occupation number depends strongly on the lattice size 
N, we have performed illustrative simulations of the percolation process for N = 1000, 
averaging over ‘1000 configurations, for values of K ranging from 2 to 256. These 
appear in table 2. 

Table 2. Maximum number of particles per site, percolation density ( N  = 1000) averaged 
over 1000 configurations and occupation number per site at percolation. 

K 

2 
4 
8 

16 
32 
64 

128 
256 

P, (simulations) 

0.996 * 0.003 
0.972 * 0.02 
0.817i0.07 
0.470 * 0.08 
0.235 * 0.04 
0.1 18 i 0.02 
0.059 * 0.01 
0.029 * 0.005 

a = K P ,  

1.98 
3.89 
6.54 
7.51 
7.53 
7.53 
1.53 
7.53 

It is clear that for large enough K the behaviour of these models should be similar 
to that of the unrestricted model, i.e. if p K  << 1 then (4) reduces to (1). This is seen in 
table 2 for K 3 16, for which the occupation number is practically the same as in the 
unrestricted problem (table 1). In these cases, the percolation density is given by 
P, - (1/2 K ) + (1/ K )  In N. Because of the restriction at small K ,  the occupation number 
must necessarily be lower than in the unrestricted case. This is also seen in table 2. 
On the other hand, noting that pK ( n )  = 1 - ( n /  N )  for K = 1 allows us to recover from 
(4) the standard problem results. 

Expressions for the occupation number at percolation and the particle and site- 
cluster distributions in a one-dimensional lattice of infinitely deep sites have been 
derived in this comment. The occupation number grows as the logarithm of the number 
of sites in the lattice. We have shown numerically that if only K particles are allowed 
in each site the occupation number is almost the same as in the unrestricted case for 
large enough K,  and that the percolation density goes as the inverse of the number of 
particles allowed per site. The 1 < K <:+In N problem remains to be solved. In the 
near future we plan to address the effects of different dynamics (e.g. a particle arriving 
to a full site is sent to the nearest non-full neighbour) in the site and particle cluster 
distributions. 
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